HIL
a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.
See Also: Loop, Current Loops, Loop Testers, Hardware in the Loop Simulation, Hardware-in-the-Loop
-
product
HiL Simulators
NovaCarts Battery
Exact cell simulation for validating battery management systems (BMS). "NovaCarts Battery" represents one of the most powerful and precise cell simulation systems on the market. This is leveraged by the modular and scalable HiL system to create optimum conditions for developing new battery management functions such as state-of-charge (SoC) and state-of-health (SoH) controls, active cell balancing and electrochemical impedance spectroscopy.
-
product
HIL Breakout Board
Onboard 192 pin snap-in terminal dramatically simplifies the wiring between your control hardware and your HIL system. As soon as the system is up and running there are 192 test terminals for easy access to all the interface signals: firing pulses, control feedback signals and other analog/digital I/O signals.
-
product
System on Demand (SoD): HiL Test System
System on Demand (SoD) is a unique, agile and standardized principle to design HiL test systems. SoD shifts the focus away from technical-only solutions to a proven automated design process – targeting our customer‘s real issues: time, budget and flexibility.
-
product
HIL and RCP DFIG Laboratory
This laboratory combines the best of both OPAL-RT and Festo solutions to deliver academic researchers and teachers with the ideal Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) simulation system to conduct experiments and teach in the fields of electrical machinery, power converters and wind energy generation.
-
product
Software Platforms
Discover complete solutions for Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) testing. OPAL-RT offers the most advanced real-time simulation software platforms for power systems, power electronics, aerospace and automotive sectors: RT-LAB (Multi-domain, MATLAB/Simulink® based), HYPERSIM (Power Systems), and NI VeriStand (Automotive).
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787457-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
Routing Card
SET-2010
With 64 single-ended or 32 differential channels, the SET-2010 provides exceptional signal routing capabilities in a small form factor. Unlike traditional routing matrix cards, the SET-2010 is designed specifically for the challenges of signal routing in HIL systems.
-
product
PXI-2512, 7-Channel, 10 A PXI Signal Insertion Switch Module
778572-12
7-Channel, 10 A PXI Signal Insertion Switch Module—The PXI‑2512 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI‑2512 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls
-
product
Custom Testing Solutions
Test and MeasurementEnable increases the robustness of your test and measurement solutions, thereby reducing errors and associated costs. Data Acquisition (DAQ)Enable defines and builds custom DAQ systems for automated measurements of any process or manufactured part. Control and AutomationEngineeringEnable ensures that your processes are programmed to be safe, effective and optimized for both speed and quality. Real-Time and Mission CriticalSystemsEnable develops dependable real-time systems and Hardware in the Loop (HIL) simulations for high-speed applications. Motion ControlEnable creates software for synchronized multi-axis robotic control of velocity, position, force and action. Machine VisionEnable implements software and hardware-based solutions for precise image analysis, data extraction and vision-guided machine control. R&D Systems/Product DevelopmentEnable’s team of engineers and scientists works with you to address and solve problems containing technical challenges and uncertainties. Electronic Test SystemsEnable programs and builds software and hardware-based solutions for accurate measurements, from DC to RF. Mobile App DevelopmentEnable enhances your systems by integrating custom iOS and Android apps. Web DevelopmentEnable enhances your systems by integrating desktop and mobile web frameworks using PHP, CSS and HTML5. Database DevelopmentEnable decentralizes your data storage to be online, secure and accessible from anywhere.
-
product
Simulation Systems
Bloomy offers Simulation Systems for Hardware in-the-Loop (HIL) and open loop test of electronic controls and mechanical actuators for all types of transportation and defense systems including aircraft, rail, automobiles and ships. These systems, now deployed at major aerospace, locomotive and military manufacturers and research facilities worldwide, provide world-class, high-fidelity simulated environments for use in both closed-loop and open-loop testing. Because Bloomy’s Simulation Systems are largely constructed from COTS components, time to first test can be reduced significantly, and their highly-customizable nature allows your test system experts to provide your unique IP to differentiate your product from your competitors.
-
product
Power Electronics Test Bench
OP1300
The multi-purpose and ready-to-use Power Electronics Test Bench combines a state-of-the-art Hardware-in-the-Loop (HIL) simulator from OPAL-RT with Imperix’s Rapid Control Prototyping (RCP) system and real power hardware. It enables rapid development of power electronics, drives and smart-grid applications across industry and academia.
-
product
PXI-2510, 68-Channel, 2 A PXI Signal Insertion Switch Module
778572-10
68-Channel, 2 A PXI Signal Insertion Switch Module—The PXI‑2510 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXI‑2510 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls
-
product
PXI-2720, 8-Bit, 10-Channel PXI Programmable Resistor Module
781985-20
8-Bit, 10-Channel PXI Programmable Resistor Module—The PXI‑2720 is a test module that replicates the behavior of resistance-based inputs and outputs such as potentiometers, resistance temperature detectors (RTDs), voltage dividers, and bridge elements. The PXI‑2720 programmatically controls a series of relays to vary the resistance across each channel of an I/O connector. This function is well suited for simulating environmental conditions in hardware‑in‑the‑loop (HIL) validation. The software provides a simple user interface that accepts inputs in units of temperature or resistance and configures the resistance across each channel.
-
product
PXIe-7822, PXI Express Digital RIO with Kintex-7 325T FPGA
783486-01
Kintex 7 325T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module—The PXIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PXIe‑7822 supports peer‑to‑peer streaming for direct data transfer between PXI Express modules. The PXIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
Signal Generator Adapter Module For FlexRIO
Signal Generator Adapter Modules for FlexRIO feature either high or low‐speed analog output and can be paired with a PXI FPGA Module for FlexRIO or the Controller for FlexRIO for custom signal generation. Whether you need to dynamically generate waveforms on the FPGA or stream them across the PXI backplane, these adapter modules are well suited for applications in communications, hardware‐in‐the‐loop (HIL) test, and scientific instrumentation.
-
product
Bloomy Simulation Reference System
The Bloomy Simulation Reference System provides a hardware in-the-loop (HIL) test environment for dynamic, closed-loop testing of many aerospace and transportation control systems. The reference system integrates the computing, I/O, and software components needed for standalone use or to form the basis of a more complex test system.
-
product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
FADEC/EEC Test Platform
The FADEC/EEC Test Platform provides a hardware in-the-loop (HIL) closed-loop test environment for dynamic and maintenance testing of full-authority digital engine control (FADEC) and electronic engine control (EEC) units of both rotary- and fixed-wing airframes. The system simulates one or more turbofan engines, including its sensors and actuators for use with the most sophisticated FADECs and EECs on the market. The system delivers repeatable, cost-effective testing in a fraction of the time needed with typical in-house simulation test systems.
-
product
Panel-mounted HIL Power Amplifier
PAC60Ci
PAC60Ci is the six-phase real time simulation amplifier, with maximum RMS phase current of 30A and maximum output power of 450VA. This current amplifier is possessed of high accuracy and fast liner response.
-
product
Test System
BMS HIL
The BMS Hardware-in-the-Loop (HIL) Test System is a high performance platform providing all necessary input signals used for battery pack simulation. A real-time operating system executes complex cell and pack models commonly used for BMS algorithm development and firmware regression testing.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787456-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PXI FlexRay Interface Module
PXI FlexRay Interface Modules provide two fully functional FlexRay interfaces, allowing an individual electronic control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. PXI FlexRay Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787458-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
Vehicle Multiprotocol Interface Device
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
product
Vehicle Multiprotocol Interface Module
C Series
C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXIe-7821, Kintex 7 160T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module
783485-01
Kintex 7 160T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module—The PXIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PXIe‑7821 supports peer‑to‑peer streaming for direct data transfer between PXI Express modules. The PXIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
Embedded Software Test Environment
Mx-Suite
Using intuitive graphics, Mx-Suite streamlines your engineering development efforts by automating tests, clarifying testable requirements, improving traceability and diagnosing possible root failure causes. Mx-Suite provides the connectivity to your MIL, SIL, or HIL test environments, allowing you to complete testing earlier in your development cycle to achieve superior product quality levels.
-
product
PXIe-2514, 7-Channel, 40 A PXI Signal Insertion Switch Module
780587-14
PXIe, 7-Channel, 40 A PXI Signal Insertion Switch Module—The PXIe‑2514 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXIe‑2514 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs).
-
product
*C Series CAN Interface Module
C Series CAN Interface Modules communicate using onboard transceivers for High-Speed/Flexible Data‑Rate or Low-Speed/Fault Tolerant CAN. C Series CAN Interface Modules are either compatible with NI-XNET or the NI-985x driver, depending on model.Using NI-XNET, you can create applications that require real-time, high-speed manipulation of hundreds of CAN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series CAN Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
Battery Pack Power HIL Testbed
8610
Chroma ATE launches the 8610 Battery Pack Power HIL Testbed for testing battery systems and components of new energy vehicles, incl. the battery module, battery management system, and cooling/heating system. Various hardware options are available for integration, such as a DC power supply, battery charge/discharge system, digital meter, Hi-Pot tester, and short-circuit and overvoltage protection devices.





























