Filter Results By:

Products

Applications

Manufacturers

Protocol

A standard way of controlling hardware and/or software that enables connection, communication and data transfer.

See Also: NTCIP, Communication Protocol


Showing results: 961 - 975 of 1114 items found.

  • USB-7855, Kintex-7 70T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device

    782915-01 - NI

    Kintex-7 70T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device - The USB‑7855 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7855 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PCIe-7822, Kintex 7 325T FPGA, Digital Reconfigurable I/O Device

    785360-01 - NI

    The PCIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.

  • PCIe-7821, Kintex 7 FPGA, Digital Reconfigurable I/O Device

    785359-01 - NI

    The PCIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-01 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-02 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7856, Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device

    782916-01 - NI

    Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device - The USB‑7856 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7856 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • NI-9403, 5 V/TTL, 32 Bidirectional Channels, 7 µs C Series Digital Module

    780179-01 - NI

    5 V/TTL, 32 Bidirectional Channels, 7 µs C Series Digital Module - The NI‑9403 is a configurable digital I/O interface for input or output with shift‑on‑the‑fly capabilities. Each channel features transient isolation between the I/O channels and the backplane. With reconfigurable I/O (RIO) technology (CompactRIO only), you can use the LabVIEW FPGA Module to program the NI‑9403 for applications such as custom, high-speed counter/timers; digital communication protocols; and pulse generation. In a CompactDAQ chassis, you can use the NI‑9403 only as a static (software-timed) digital I/O module. You cannot use these modules to route timing or triggering signals.

  • NI-9401, 5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module

    779351-01 - NI

    5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module - The NI‑9401 is a configurable digital I/O interface for input or output in 4‑bit increments. Therefore, the NI‑9401 can create three configurations: 8 digital inputs, 8 digital outputs, or four digital inputs and four digital outputs. With reconfigurable I/O (RIO) technology (CompactRIO only), you can use the LabVIEW FPGA Module to program the NI‑9401 for implementing custom, high-speed counter/timers; digital communication protocols; pulse generation; and more. Each channel features transient isolation between the I/O channels and the backplane.

  • NI-9401, 5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module

    782401-01 - NI

    5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module - The NI‑9401 is a configurable digital I/O interface for input or output in 4‑bit increments. Therefore, the NI‑9401 can create three configurations: 8 digital inputs, 8 digital outputs, or four digital inputs and four digital outputs. With reconfigurable I/O (RIO) technology (CompactRIO only), you can use the LabVIEW FPGA Module to program the NI‑9401 for implementing custom, high-speed counter/timers; digital communication protocols; pulse generation; and more. Each channel features transient isolation between the I/O channels and the backplane.

  • NI-9403, 5 V/TTL, 32 Bidirectional Channels, 7 µs C Series Digital Module

    779787-01 - NI

    5 V/TTL, 32 Bidirectional Channels, 7 µs C Series Digital Module - The NI‑9403 is a configurable digital I/O interface for input or output with shift‑on‑the‑fly capabilities. Each channel features transient isolation between the I/O channels and the backplane. With reconfigurable I/O (RIO) technology (CompactRIO only), you can use the LabVIEW FPGA Module to program the NI‑9403 for applications such as custom, high-speed counter/timers; digital communication protocols; and pulse generation. In a CompactDAQ chassis, you can use the NI‑9403 only as a static (software-timed) digital I/O module. You cannot use these modules to route timing or triggering signals.

  • PCIe-7841, Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device

    781100-01 - NI

    Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7841 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7841 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PCIe-7820, Kintex 7 160T FPGA Digital Reconfigurable I/O Device

    785361-01 - NI

    The PCIe‑7820 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7820 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-­in­-the-­loop (HIL) test, bit error rate test, and other applications that require precise timing and control.

  • L2-7 10GbE Test Solutions

    NGY 10GE SFP+ and 10G BASE-T Load Modules - Keysight Network Applications and Security

    Ixia's 10 Gigabit Ethernet LSM10GXM test load modules delivers an industry-leading, high-density, affordable layer 2 through 7, 10 Gigabit Ethernet IP test solution. The NGY family supports both low port count layer 2/3 applications with limited project budgets and highest density test lab, QA, and system test applications. NGY is perfect for both converged data center infrastructure testing and 10GbE switch test beds. NGY load modules leverage Ixia's converged data center test applications to offer the high port scalability, virtual scalability, protocol coverage, with an affordable test solution for data communications testing.

  • Gen-Z

    Teledyne LeCroy

    Gen-Z is a data-access technology designed to provide high-speed, low-latency, memory-semantic access to data and devices via direct-attached, switched or fabric topologies. Gen-Z components use low-latency read and write operations to directly access data and use a variety of advanced operations to move data with minimal application or processor involvement. Gen-Z fabric utilizes memory-semantic communications to move data between memories on different components with minimal overhead. Memory-semantic communications are extremely efficient and simple, which is critical to delivering optimal performance and power consumption. Teledyne LeCroy provides protocol analysis and error injection test equipment to support development and debug of Gen-Z based devices

  • Compute Express Link (CXL)

    Teledyne LeCroy

    Compute Express Link (CXL) is a new high-speed CPU-to-Device and CPU-to-Memory interconnect designed to accelerate next-generation data center performance. CXL technology maintains memory coherency between the CPU memory space and memory on attached devices, which allows resource sharing for higher performance, reduced software stack complexity, and lower overall system cost. This permits users to simply focus on target workloads as opposed to the redundant memory management hardware in their accelerators. CXL is based on a PCI Express 5.0 Physical layer with speeds up to 32GT/s. Teledyne LeCroy provides protocol analysis test equipment to support development and debug of CXL based devices.

Get Help