Filter Results By:

Products

Applications

Manufacturers

Test Systems

group of interoperable devices whose integration perform a common test purpose.

See Also: Systems, Equipment, System Integrators, System Test, System Integration


Showing results: 4246 - 4260 of 5294 items found.

  • Parallel Simulation Engine

    RocketSim - Cadence Design Systems

    Complementing compiled-code simulators, Cadence® RocketSim™ parallel simulation engine eliminates functional verification bottlenecks by speeding up simulation using commonly available multi-core servers. The engine is proven for register-transfer level (RTL) system on chip (SoC), gate-level functional simulation, and gate-level design for test (DFT) simulation in numerous marquee systems and semiconductor companies in the mobile, server, and graphics domains. Ever-growing chip density and complexity slow down simulation, making functional verification a severe bottleneck. As a result, chip design projects miss their time-to-market targets, or designers end up taping out early with less confidence. RocketSim parallel simulation engine solves the bottleneck common in existing compiled-code simulators by offloading the time-consuming calculations to an ultrafast multi-core engine.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - North America 240VAC

    781630-05 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device

    781630-07 - NI

    Ethernet GPIB Instrument Control Device - The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - Brazil 127/220VAC

    781630-12 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - China 220VAC

    781630-10 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - Swiss 220VAC

    781630-02 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - Korea 220VAC

    781630-09 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000 , Ethernet GPIB Instrument Control Device - Universal Euro 240VAC

    781630-04 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000 , Ethernet GPIB Instrument Control Device - United States 120VAC

    781630-01 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - United Kingdom 240VAC

    781630-06 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • GPIB-ENET/1000, Ethernet GPIB Instrument Control Device - Taiwan 110VAC

    781630-11 - NI

    The GPIB‑ENET/1000 is an IEEE 488 controller device for computers with an Ethernet port. You can use this device to share a single GPIB system among many networked users or to control several test systems from a single networked host. The GPIB‑ENET/1000 features a password-protected web interface for easy configuration. It can also control IEEE 488 devices from anywhere on an Ethernet‑based (LAN) TCP/IP network (Gigabit, 100BASE‑TX, 10BASE‑T). Each device interfaces to and shares up to 14 GPIB devices from several network hosts, and you can control up to 100 GPIB‑ENET/1000 interfaces with a single computer. The device includes a license for the NI‑488.2 driver software, providing maximum reliability for connecting to third-party instruments with GPIB.

  • Automotive Tester

    PCE Instruments

    An automotive tester can be used to inspect one or more aspects of an automobile. For example, a borescope automotive tester is an automotive inspection camera used by auto body mechanics to see inside car, truck and other vehicle engines before removing any engine parts. Other kinds of automotive tester devices are used to adjust belt tension, test the electronic ignition starter, search for air conditioning leaks, measure the force required to press a brake pedal, determine the antifreeze concentration, or check the paint thickness over collision repairs.PCE Instruments (PCE) offers a wide variety of automotive tester products. These diagnostic support tools help professional automobile mechanics identify a number of vehicle repair needs. PCE's automotive tester products can aid in the diagnosis of many different mechanical and electrical system issues, including but not limited to locating the cause of an engine misfire, testing fuel injector resistance, pinpointing an engine coolant leak, or detecting car cylinder head problems. It's no wonder so many auto repair technicians choose to stock theirs shops and garages with PCE automotive tester products.

  • ARINC825 Cards

    AIM GmbH

    AIM’s ARINC825 cards can work either with full functionality as an active CAN node for testing and simulating or in listening only mode for monitoring and recording purposes of Avionic CAN bus (ARINC825) applications on up to 4 electrically isolated CAN bus nodes concurrently. All nodes are in conformance with the ISO11898-1/-2 standard. They are accessible by software separately and can be used as 4 independent CAN bus nodes. An onboard IRIG-B time decoder allows users to accurately synchronize single or multiple modules to a common time source. All supported signals are available through front I/O and rear I/O interface. ARINC825 cards consist of FPGA based CAN interface controllers as well as a FPGA based 32-bit microcontroller core and a separate processor for IRIG-B synchronization with high resolution time stamping. All nodes are operating concurrently at CAN bus high speed bit rate of up to 1Mbit/s with the intelligence to process scheduling of CAN frames in real time onboard to significantly off-load the host processor.For embedded applications the AMC825-4 PMC module is available in a conduction cooled version. Using AIM’s family of PCI, CPCI (3U and 6U) and VMEbus carrier cards for PMC our clients have off the shelf solutions in a broad range of card formats. ARINC825 (CAN bus) modules are delivered with an Application Programming Interface (API) and Driver Software compatible with Windows, Linux and VxWorks.An ARINC825 Resource Component is available for AIM’s PBA.pro™ databus test and analysis tool including Tx and Rx simulation capabilities, a Chronological Bus Monitor and support for decoding of payload data within CAN messages. This allows to implement a powerful ARINC825 (CAN bus) analyzer or a complete test system in conjunction with other AIM avionics databus interfaces and PBA.pro™ supported 3rd party hardware.

  • Resonance Dip Meter

    NRM-2 - National RF, Inc

    National RF’s Resonance Dip Meter is a test instrument used to determine the resonant frequency of a tuned circuit or resonant network, such as an antenna system. In addition, the unit may function as an RF detector, or a secondary frequency source. The instrument is analogous to the older vacuum tube “grid dip meter,” once popular in every electronic laboratory or radio station. Unique to this updated version is a buffered output that may drive a digital frequency counter for exact measurement of resonant frequency, or connected to an oscilloscope to be used as an RF detector and waveform/modulation monitor.

  • PXI Automotive Ethernet Interface Module

    NI

    The PXI Automotive Ethernet Interface Module communicates with Automotive Ethernet so that you can use the NI‑XNET driver or standard networking drivers to develop applications that require Automotive Ethernet to test and validate automotive electronic control units (ECUs). It provides up to four independent endpoints or up to two network terminal access points (TAPs). With onboard hardware timestamping and the ability to act as 802.1AS masters or slaves, the PXI Automotive Ethernet Interface Module can synchronize with an external network as well as the rest of a PXI system.

Get Help