Filter Results By:

Products

Applications

Manufacturers

Switches

enable on off function or change of direction.

See Also: Membrane Switch, Coaxial Switches, Crossbar, High Voltage Switching, Fiber Optic Switching, Microwave Switching, Optical Switch


Showing results: 841 - 855 of 1527 items found.

  • LXI Optical Switching - 1:1 Multiplexer (SPST) Plugin Module

    65-281-380 - Pickering Interfaces Ltd.

    The 65-281-380 1:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 32:1 Multiplexer Plugin Module

    65-281-315 - Pickering Interfaces Ltd.

    The 65-281-315 32:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 16:1 Multiplexer Plugin Module

    65-281-314 - Pickering Interfaces Ltd.

    The 65-281-314 16:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 2:1 Multiplexer Plugin Module

    65-281-381 - Pickering Interfaces Ltd.

    The 65-281-381 2:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 8:1 Multiplexer Plugin Module

    65-281-323 - Pickering Interfaces Ltd.

    The 65-281-323 8:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 4:1 Multiplexer Plugin Module

    65-281-342 - Pickering Interfaces Ltd.

    The 65-281-342 4:1 multiplexer is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • LXI Optical Switching - 8x8 Matrix Plugin Module

    65-280-313 - Pickering Interfaces Ltd.

    The 65-280-313 8x8 matrix is part of the 65-280 and 65-281 ranges of optical plug-in modules offering matrix & insert/bypass or multiplexer & SPST topologies respectively with all models based on MEMS fiber optic switches and available in various populations per plugin. In addition, a choice of different connector styles to suit most applications is offered: FC/APC (for optimal performance), FC/PC, SC/PC and ST for general applications and LC for high density applications. They use MEMS (Micro-Electro-Mechanical-Systems) based optical switches to route signals between terminals by redirecting the optical signal. This is achieved using micromechanical mirrors driven by a highly precise mechanism activated via an electrical control signal.

  • SWB-2816, 8x46, 0.3 A, Row Access, Reed Relay Matrix Module for SwitchBlock

    781420-16 - NI

    8x46, 0.3 A, Reed Matrix Module for SwitchBlock - The SWB‑2816 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, … individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2814, 8x9, 1 A, 2-Wire Reed Matrix Module for SwitchBlock

    781420-14 - NI

    8x9, 1 A, 2-Wire Reed Matrix Module for SwitchBlock - The SWB‑2814 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2814, 8x9, 1 A, 2-Wire Reed Matrix Module for SwitchBlock

    781421-14 - NI

    8x9, 1 A, 2-Wire Reed Matrix Module for SwitchBlock - The SWB‑2814 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2817, 16x22, 0.3 A, Reed Matrix Module for SwitchBlock

    781421-17 - NI

    16x22, 0.3 A, Reed Matrix Module for SwitchBlock - The SWB‑2817 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2812, 16x9, 1 A, Reed Matrix Module for SwitchBlock

    781420-12 - NI

    16x9, 1 A, Reed Matrix Module for SwitchBlock - The SWB‑2812 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2817, 16x22, 0.3 A, Reed Matrix Module for SwitchBlock

    781420-17 - NI

    16x22, 0.3 A, Reed Matrix Module for SwitchBlock - The SWB‑2817 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2812, 16x9, 1 A, Reed Matrix Module for SwitchBlock

    781421-12 - NI

    16x9, 1 A, Reed Matrix Module for SwitchBlock - The SWB‑2812 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

  • SWB-2816, 8x46, 0.3 A, No Row Access, Reed Relay Matrix Module for SwitchBlock

    781421-16 - NI

    8x46, 0.3 A, Reed Matrix Module for SwitchBlock - The SWB‑2816 is a reed relay matrix module for SwitchBlock systems. Designed for high power, it can operate as an individual relay card or expand in a single carrier or single PXI chassis. You can connect any input to any output, individually or in combination. You can use matrix switches to route signals from oscilloscopes, DMMs, arbitrary waveform generators, and power supplies to various test points on a unit under test (UUT). The primary benefit of matrix switches is simplified wiring—the overall test system can easily and dynamically change the internal connection path without any external manual intervention.

Get Help