Filter Results By:

Products

Applications

Manufacturers

LabVIEW

Graphical development software


Showing results: 241 - 255 of 378 items found.

  • PXIe-2512, 7-Channel, 10 A PXI Signal Insertion Switch Module

    780587-12 - NI

    PXIe, 7-Channel, 10 A PXI Signal Insertion Switch Module—The PXIe‑2512 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXIe‑2512 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs).

  • PXIe-2514, 7-Channel, 40 A PXI Signal Insertion Switch Module

    780587-14 - NI

    PXIe, 7-Channel, 40 A PXI Signal Insertion Switch Module—The PXIe‑2514 fault insertion unit (FIU) is designed for hardware‑in‑the‑loop (HIL) applications and electronic reliability tests. Each module has a set of feedthrough channels that you can open or short to one or more fault buses. You can use this architecture to simulate open or interrupted connections as well as shorts between pins, shorts to battery voltages, and shorts to ground on a per-channel basis. When controlled with the LabVIEW Real-Time Module, the PXIe‑2514 is ideal for validating the integrity of control systems including engine control units (ECUs) and full authority digital engine controls (FADECs).

  • PCIe-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    786456-01 - NI

    PCIe, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The PCIe-7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe-7846 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXIe-5673E, 6.6 GHz PXI Vector Signal Generator

    781263-01 - NI

    6.6 GHz PXI Vector Signal Generator—The PXIe‑5673E is a wide-bandwidth module that, when combined with the appropriate software, can generate a variety of signals. With the Modulation Toolkit for LabVIEW, it can generate different waveforms including AM, FM, CPM, ASK, FSK, MSK, PSK, QAM (4‑, 16‑, 64‑, and 256‑QAM), multitone signals, arbitrary waveforms, and many others. In addition, you can combine these vector signal generators with standard-specific software to generate signals for GPS, GSM/ EDGE/WCDMA, WLAN, WiMAX, DVB‑C/H/C, ISDB‑T, ZigBee, and others. With PXIe‑5673E stream‑from‑disk capabilities, you can generate continuous waveforms that are up to several terabytes in length.

  • PXIe-5673E, 6.6 GHz PXI Vector Signal Generator

    781340-03 - NI

    6.6 GHz PXI Vector Signal Generator—The PXIe‑5673E is a wide-bandwidth module that, when combined with the appropriate software, can generate a variety of signals. With the Modulation Toolkit for LabVIEW, it can generate different waveforms including AM, FM, CPM, ASK, FSK, MSK, PSK, QAM (4‑, 16‑, 64‑, and 256‑QAM), multitone signals, arbitrary waveforms, and many others. In addition, you can combine these vector signal generators with standard-specific software to generate signals for GPS, GSM/ EDGE/WCDMA, WLAN, WiMAX, DVB‑C/H/C, ISDB‑T, ZigBee, and others. With PXIe‑5673E stream‑from‑disk capabilities, you can generate continuous waveforms that are up to several terabytes in length.

  • PXIe-5673E, 6.6 GHz PXI Vector Signal Generator

    781263-03 - NI

    6.6 GHz PXI Vector Signal Generator—The PXIe‑5673E is a wide-bandwidth module that, when combined with the appropriate software, can generate a variety of signals. With the Modulation Toolkit for LabVIEW, it can generate different waveforms including AM, FM, CPM, ASK, FSK, MSK, PSK, QAM (4‑, 16‑, 64‑, and 256‑QAM), multitone signals, arbitrary waveforms, and many others. In addition, you can combine these vector signal generators with standard-specific software to generate signals for GPS, GSM/ EDGE/WCDMA, WLAN, WiMAX, DVB‑C/H/C, ISDB‑T, ZigBee, and others. With PXIe‑5673E stream‑from‑disk capabilities, you can generate continuous waveforms that are up to several terabytes in length.

  • PXIe-5673E, 6.6 GHz PXI Vector Signal Generator

    781262-02 - NI

    6.6 GHz PXI Vector Signal Generator - The PXIe‑5673E is a wide-bandwidth module that, when combined with the appropriate software, can generate a variety of signals. With the Modulation Toolkit for LabVIEW, it can generate different waveforms including AM, FM, CPM, ASK, FSK, MSK, PSK, QAM (4‑, 16‑, 64‑, and 256‑QAM), multitone signals, arbitrary waveforms, and many others. In addition, you can combine these vector signal generators with standard-specific software to generate signals for GPS, GSM/ EDGE/WCDMA, WLAN, WiMAX, DVB‑C/H/C, ISDB‑T, ZigBee, and others. With PXIe‑5673E stream‑from‑disk capabilities, you can generate continuous waveforms that are up to several terabytes in length.

  • PCIe-7852, Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device

    781103-01 - NI

    Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7852 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7852 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI-7842, Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module

    780338-01 - NI

    Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7842 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7842 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7851, Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780339-01 - NI

    Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7851 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7851 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PCIe-7851, Virtex-5 LX30 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device

    781102-01 - NI

    Virtex-5 LX30 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7851 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7851 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI-7953, Virtex-5 LX50 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780340-01 - NI

    Virtex-5 LX50 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7852 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7852 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7853, Virtex-5 LX85 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780341-01 - NI

    Virtex-5 LX85 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7853 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7853 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7841, Virtex-5 LX30 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module

    780337-01 - NI

    Virtex-5 LX30 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7841 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7841 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7854, Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780342-01 - NI

    Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7854 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7854 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

Get Help